
High-Performance Graphics 2025
A. Knoll and C. Peters
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 8

Image-Based Spatio-Temporal Interpolation for Split Rendering

M. Steiner†1 , T. Köhler†1 , L. Radl1 , B. Budge2 , and M. Steinberger1

1Graz University of Technology, Austria
2Meta Reality Lab Research, USA

Ground Truth Unidir. Extrapolation (w/o hole-filling) Bidir. Reprojection + auxiliary cameras Ours

Figure 1: Our method performs image-based spatio-temporal interpolation in a challenging split rendering setting, where the low-powered
client receives server frames that are far apart, both temporally and spatially: Pure extrapolation from previous frames leads to unrealistic
motion for fast objects, and reveals many disocclusions. Bidirectional reprojection between the previous and next predicted pose, combined
with information from auxiliary cameras, helps to produce smooth motion and fill in disocclusions. Finally, our method encodes and transfers
additional high-frequency shading information, like dynamic shadows, to produce high-quality interpolated frames.

Abstract
Low-powered devices – such as small form factor head-mounted displays (HMDs) – struggle to deliver a smooth and high-
quality viewing experience, due to their limited power and rendering capabilities. Cloud rendering attempts to solve the quality
issue, but leads to prohibitive latency and bandwidth requirements, hindering use with HMDs over mobile connections or
even over Wifi. One solution – split rendering – where frames are partially rendered on the client device, often either requires
geometry and rendering hardware, or struggles to generate frames faithfully under viewpoint changes and object motion. Our
method enables spatio-temporal interpolation via bidirectional reprojection to efficiently generate intermediate frames in a
split rendering setting, while limiting the communication cost and relying purely on image-based rendering. Furthermore, our
method is robust to modest connectivity issues and handles effects such as dynamic smooth shadows.

CCS Concepts
• Computing methodologies → Image-based rendering; Rendering;

1. Introduction

Immersive applications like virtual gaming, telepresence, and
training simulations demand high-fidelity, low-latency graphics—
delivered wirelessly and seamlessly to mobile head-mounted dis-
plays (HMDs). Yet current devices are severely constrained by ther-
mal, power, and hardware limitations, making native rendering of
complex, dynamic scenes at high frame rates increasingly infea-
sible. Meanwhile, content complexity continues to rise: modern
rendering pipelines—such as Nanite in Unreal Engine—leverage
vast amounts of detailed geometry, pushing the boundaries of what

† Both authors contributed equally to this work

lightweight clients can handle. Rendering such content or even just
rasterizing the geometry directly on-device is not a viable option.
Cloud rendering can bridge the performance gap but comes at a
steep cost: prohibitive motion-to-photon latency, high bandwidth
requirements, and a dependence on stable, low-latency connectiv-
ity. These drawbacks are especially damaging in untethered VR,
where unpredictable and fast head motion makes even minor de-
lays unacceptable.

Split rendering—distributing the rendering workload between
server and client—offers a promising compromise. However, many
existing approaches either transmit geometric data [MVD*18;
HSV*22], which is increasingly impractical given bandwidth
and decoding constraints, or rely purely on image-based warp-

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.70215

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0008-7430-6922
https://orcid.org/0009-0004-2685-0502
https://orcid.org/0009-0008-4075-5877
https://orcid.org/0009-0005-9305-3260
https://orcid.org/0000-0001-5977-8536
https://doi.org/10.1111/cgf.70215

2 of 12 M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering

ing [BMS*12; YTS*11], which breaks down under fast motion,
large viewpoint changes, and dynamic lighting.

In this work, we present an image-based split rendering tech-
nique that addresses these issues through spatio-temporal interpo-
lation, without requiring geometry on the client. Our method is
designed to handle extreme frame rate mismatches—e.g., a server
rendering at 10 FPS while the client displays at 120 FPS—and re-
mains robust even under delayed server data or unpredictable head
movement. To generate high-quality intermediate frames without
relying on rasterization hardware, we employ bidirectional repro-
jection based on 3D scene flow, allowing us to interpolate and ex-
trapolate views temporally. We use forward splatting with iterative
backward search to improve the reprojection accuracy and mini-
mize artifacts from occlusions or flow mismatches. To address dis-
occlusions caused by head motion and scene changes, we introduce
auxiliary cameras that provide additional coverage and visibility.
Finally, we develop a compact dynamic shadow encoding and re-
projection scheme that preserves realistic shading effects across
frames, even in the presence of fast object or light movement.

While recent works like Yang et al. [YZZ*24] explore frame
generation, they only focus on minor frame rate increases (e.g.
60→120 FPS) and do not operate under a split rendering paradigm.
In contrast, we tackle much more demanding scenarios—both tem-
porally and spatially—and demonstrate our method’s robustness
across a range of dynamic scenes. Our results demonstrate visually
consistent frames at high frame rates (120 FPS on the client) and
efficient bandwidth usage, all while avoiding the need for geometry
transmission. Our main contributions are:

• a novel spatio-temporal interpolation method tailored for image-
based split rendering,

• a robust reprojection pipeline leveraging bidirectional scene
flow, iterative search, and auxiliary cameras,

• a dynamic shadow encoding and reprojection mechanism that
preserves shading realism under fast object motion,

• and a complete system optimized for both visual fidelity and
bandwidth efficiency, evaluated across challenging scenarios.

These contributions enable a practical, high-quality rendering
pipeline for mobile VR, delivering smooth, immersive visuals even
under sparse server updates and real-world network conditions.

2. Related Work

Image-Based Rendering Foundations and Advances. Image-
based rendering (IBR) has a long history of generating novel
views without full geometry. Early techniques like view interpola-
tion [CW93], the Lumigraph [GGSC96], and Layered Depth Im-
ages (LDI) [SGHS98] provided foundational tools for this task.
Later work introduced more dynamic and efficient methods, in-
cluding post-rendering warping [MMB97], image-space acceler-
ation [NSL*07], and bidirectional reprojection [YTS*11]. Itera-
tive extensions improved depth refinement [BMS*12; LKE18],
leveraged reflective surfaces [LRR*14], or used proxy-guided
warping [RKR*16], and were even deployed in mobile con-
texts [SNC12].

Additional efforts focused on perceptual quality and real-
ism: perceptually adaptive rendering [DER*10; DRE*10] and

image-based depth-of-field effects [YWY10; LKC08] helped en-
hance interactive rendering fidelity. Meanwhile, frame interpo-
lation and hole-filling methods have been developed to ad-
dress temporal upsampling and view completion, using neu-
ral networks [BDM*21; WKZ*23; WVS*24], gradient-domain
editing [PGB03], or metameric inpainting [dAWA*23]. Yang et
al. [YZZ*24] use neural methods for minor temporal upsampling.

While these works have substantially advanced IBR, they often
assume access to full geometry, rely on the availability of a ras-
terizer, or target relatively modest upsampling tasks. Our method
builds on these ideas but is designed for challenging split-rendering
settings, extending image-based reprojection to handle both sig-
nificant spatio-temporal interpolation and dynamic lighting effects,
without requiring geometry or high bandwidth.

Cloud Rendering and Free-Viewpoint Systems. The limitations
of mobile devices have driven extensive work in cloud-assisted ren-
dering. Systems like CloudVR [KSEY18], FlashBack [BCC16],
and Furion [LHC*17] stream rendered content from the cloud to
lightweight clients, while approaches like Outatime [LCC*15] ex-
ploit frame prediction to mitigate latency. Others reduce transmis-
sion costs through view-region optimization [LBR*18], impostor-
based rendering [MFL21], or by decoupling shading and geometry
for efficient texture streaming [MVD*18].

In parallel, free-viewpoint and 3D-TV systems [MFY*09;
ZDD10; NKD*11; NKDW08; GHZ*24; LTV*16; DBZD12;
SA12] have explored depth-based view synthesis and GPU-
accelerated pipelines for immersive multi-view rendering, often un-
der fixed-view or wired conditions.

More recently, split rendering has emerged as a hybrid alterna-
tive. Hladky et al. [HSV*22] use an approximate geometric scene
representation for client-side rendering; and XRGo [GLJ*25] dy-
namically balances workload between server and client. Compared
to these, our approach targets more extreme interpolation (spatial
and temporal), avoids G-buffers or geometry, and introduces tech-
niques specifically for mobile VR scenarios, such as bidirectional
reprojection and auxiliary views to handle disocclusion and dy-
namic shading.

3. Method

We propose an image-based split rendering method that recon-
structs high-frame-rate client views from sparsely rendered server
frames. By relying solely on image data, our approach avoids ge-
ometry transmission and client-side rasterization. Using bidirec-
tional scene flow, auxiliary cameras, and dynamic shadow encod-
ing, we achieve robust spatio-temporal interpolation, even under
disocclusion and fast shading changes.

3.1. Preliminaries: Bidirectional Reprojection

Bidirectional image-based reprojection [YTS*11] relies on infor-
mation from frames Ft and Ft+1, to generate intermediate frames
Ft+α, with α ∈ [0,1]. Each frame provides stationary camera infor-
mation Ct = {It ,Zt ,Pt}, consisting of the color image It , z-buffer

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering 3 of 12

C
ol

or
D

ep
th

3D
O

bj
ec

tM
ot

io
n

(a) Forward (b) Backward

Figure 2: Example of the forward and backward information
needed to perform bidirectional reprojection.

Zt , and view-projection transform Pt(x), which transforms a homo-
geneous world space coordinate x into C’s normalized device co-
ordinate (NDC) space (including perspective division). Reproject-
ing dynamic objects requires additional transitional information in
the form of forward and backward 3D object motion Ot→t+1 and
Ot+1→t , which hold 3D velocity for all visible surface points in Ct
and Ct+1 between time points t and t + 1. Storing O as 3D world
space motion, leads to sparse information when large parts of an
image contain static objects, allowing for extensive compression.
We show an example of these buffers for a forward/backward im-
age pair in Fig. 2. The NDC scene flow at time point t + α for
each pixel from camera Ct to another camera defined via the view-
projection transform Pto can be computed from its 2D NDC pixel
coordinates p = (px, py) as

V (Ct ,Ot→t+1,Pto,α)[p] = Pto(P
−1
t (p̄)+αOt→t+1[p])− p̄,

with p̄ = (px, py,Zt [p],1)⊤.
(1)

In their work, Yang et al. [YTS*11] compute the complete for-
ward and backward scene flow fields V f

t+1,V b
t+1, which contain the

flow of each visible surface point in Ct into the NDC space of Ct+1,
and vice versa

V f
t+1 =V (Ct ,Ot→t+1,Pt+1,1), (2)

V b
t+1 =V (Ct+1,Ot+1→t ,Pt ,1). (3)

While not explicitly computed in their work, we will denote the
scene flow from Ct and Ct+1 to the interpolated space at t +α as

V f
t+α = αV f

t+1, V b
t+α = (1−α)V b

t+1. (4)

To find the forward/backward correspondending pixels p̂ f/b in Ft
and Ft+1 for a pixel pt+α in Ft+α, they then perform fixed-point

iteration (FPI) on these flow fields:

p f/b
i = pt+α−V f/b

t+α [p
f/b
i−1].xy, with p f/b

0 = pt+α, (5)

p̂ f/b = p f/b
NI

, (6)

with i ∈ {1, . . . ,NI} for NI iterations, and the simplest approach
initializing the FPI with pt+α. This approach linearly interpolates
between two NDC spaces, which leads to two pressing issues: (1)
It only allows for temporal upsampling without the ability to react
to a divergent client camera, as the concept of a camera projection
Pt+α does not exist, making it undesirable for split rendering; (2) It
assumes that a surface point that is visible in Ct and Ct+1 maps to
the same pixel in the reprojected image at t +α, which fails due to
the non-linearity of the projective transform.

Bidirectional Visibility and Blending. To determine the best cor-
respondence between the forward and backward results p̂ f and p̂b,
both have to be compared based on depth and projection error.
Their respective reprojection errors e f/b and projected depths z f/b

at t +α can be computed as

e f = ∥(p̂ f +V f
t+α[p̂

f].xy)−pt+α∥, (7)

z f = Zt [p̂ f]+V f
t+α[p̂

f].z, (8)

and vice versa for eb and zb (using V b
t+α, p̂b, and Zt+1). Algorithm 1

shows how to determine the better corresponding match between
p̂ f and p̂b, by using a reprojection error threshold ϵe and a depth
similarity threshold ϵz, both given in NDC units. Finally, instead of
simply using the color of the better match, the point can be pro-
jected into the next frame to find a better correspondence there
(cf. Algorithm 2). The colors are then linearly blended based on
α, which leads to a smoother shading transition.

ALGORITHM 1: Choosing the best match between the
forward and backward reprojection results [YTS*11].

Data: eb,e f ,zb,z f , Reprojection errors and depths
Result: Choice of best corresponding match
if eb < ϵe∧ e f < ϵe then

if |zb− z f |< ϵz then
/* Correspond to same point */
⇒ choose the match with the smaller error;

else
/* Both correspond, but one

occludes the other */
⇒ choose the match closest to the camera;

end
else if eb < ϵe∨ e f < ϵe then

/* Only one match corresponds */
⇒ choose the match which corresponds;

else
/* No match corresponds */
⇒ choose either the match with the smaller

error [YTS*11] or none (Ours);
end

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 12 M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering

Transferred Data
Low-power Client (HMD)

Predicted
Pose

Server

Image-based RenderingEncode

Predicted
Pose Decode

Forward & Backward
Compute

Scene Flow Splatting

Iterative
Search

Render Color, Depth
& Object Motion

 at

Color & Depth

Forward and Backward
3D Object Motion

Forward and Backward
Shadow Information

Color & Depth at

Cameras: High res. main + low res. left/right auxiliary

Predict
Movement

Render
Shadow Information

Actual
Pose

Framerates
Server: 10 FPS
Shadows: 40 FPS

Client: 120 FPS

Blending Rendered Image
at

Figure 3: Pipeline overview of our method. The server receives frequent pose updates from the client, and predicts the future camera pose
at t +1. It then renders color, depth, object motion (10 FPS), and dynamic shadow information (40 FPS). To prevent disocclusions artifacts,
we also render and transfer buffers for lower resolution auxiliary camera (left & right). All buffers are then efficiently encoded to fulfill the
required bandwidth demands and transferred. The client decodes this data and performs image-based bidirectional reprojection at 120 FPS
from the previous (t) and predicted next (t +1) camera frame to the actual pose (t +α).

ALGORITHM 2: Second chance reprojection and blend-
ing of a corresponding match.

Data: Matching point p̂ in source camera frame C,
Destination camera frame C′,
Forward/backward 3D object motion O and O′,
Blending weight α.

Result: The final blended RGB color c.
p̂′←V (C,O,P′,1)[p̂];
c← Color(C, p̂) ; // Simply I[p̂] for [YTS*11]

if in_range(p̂′,C′)∧|Z[p̂]−Z′[p̂′]|< ϵz then
if ∥O[p̂]+O′[p̂′]∥< ϵO then

/* Check if forward and backward
motion cancel out (not done
in [YTS*11]) */

c′← Color(C′, p̂′);
c← lerp(c,c′,α);

end
end

FPI Initialization. As multiple pixels can reproject to the same
pixel pt+α at different depths, we want to find the match that is clos-
est to the camera. The task of finding a good initialization of FPI is
crucial, as it heavily influences if the algorithm will converge to the
correct result. Multiple initialization strategies have been proposed:
Yang et al. [YTS*11] offset the starting point for t by the scene flow
of t + 1, and exploit temporal coherence by reusing information
from the previous interpolated frame, along with a small window
search. We find that these strategies fail in challenging scenarios,
e.g. for fast object or camera movements. Bowles et al. [BMS*12]
subdivide the source image into pixel quads, and warp and rasterize
those quads in the new camera frame, which leads to robust results,
but is undesirable as it requires rasterization hardware on our client
device. For non-temporal stereoscopic reprojection, a small fixed
horizontal offset can also lead to a better initialization [BMS*12].
Lee et al. [LKE18] employ a stochastic search inside a tightly

bounded window, where the quality ultimately depends on the num-
ber of samples taken. Other works initialize the search through for-
ward point splatting and a small-window search [LRR*14], which
we also found to produce the most robust results.

3.2. Pipeline Overview

We show an overview of our method’s pipeline in Fig. 3. We as-
sume a low-powered client device that does not need to contain
any specialized rasterization or ray tracing hardware – e.g. a small
form-factor HMD. The client is connected to a powerful server over
a wireless connection, assuming a reasonably stable connection
with a bandwidth between 10-100 Mbit/s. For a responsive expe-
rience, we assume a client frame rate of fc=120 FPS. The server
receives frequent pose updates from the client, allowing for rea-
sonably accurate prediction of the future pose Pt+1, e.g. roughly
200 ms in advance. This enables the server to render a future frame
Ft+1 at the predicted pose, and to send the data such that the client
receives the information of frame Ft and Ft+1 in time to render a
frame at time t +α, with α > 0. Our method can also extrapolate
beyond α > 1 to some extent, making it robust to slightly unstable
connections with unpredictable latency. For example: If the server
renders and transfers frames at fs=10 FPS, the client temporally
interpolates the eleven in-between frames – additionally, all frames
are spatially interpolated for the client’s actual current pose Pt+α.

The transferred data from the server to the client for frame Ft+1,
consists of the following buffers:

1. Stationary information Ct+1, containing the static render infor-
mation at time t+1:
a. View-projection transform Pt+1
b. RGB image color It+1
c. NDC z-buffer Zt+1, transferred in reverse [0,1] range

2. Forward and backward transitional information between time
points t and t+1 for all visible surface points in Ct and Ct+1:
a. 3D object motion buffers Ot→t+1, and Ot+1→t . We compute

and transfer these buffers in the NDC space of Ct and Ct+1
respectively, as this confines motion of almost all moving

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering 5 of 12

points to the range [−1,1], and make sure to apply the motion
linearly in world space on the client side.

b. Dynamic shading information St→t+1 and St+1→t , storing in-
formation about high-frequency shading effects (cf. Sec. 3.3
for our encoding of dynamic soft shadows).

Additionally, to address disocclusions that inevitably happen
during spatio-temporal interpolation, we propose to use additional
auxiliary cameras, rendering at a lower resolution and with a larger
field of view (FOV). As our setup is ultimately designed for a
stereoscopic HMD setting, we choose to place two auxiliary cam-
eras to the left and right of the main camera (see Sec. 4.1 for our
exact experimentation setup).

3.3. Dynamic Soft Shadows

Fast changing shading effects, like shadows, are especially chal-
lenging for frame interpolation, as they require a distinction be-
tween object motion and optical flow. Linearly blending between
two frames with dynamic shadows leads to undesired in/out-fading
of shadows (see Fig. 4). We propose to render additional interme-
diate frames on the server, and sparsely encode information about
dynamic shadows to reapply them on the client.

Server: We track shading changes for all visible surface points
in Ct and Ct+1 between time steps t and t + 1, by rendering ad-
ditional intermediate frames Ct+βi

at regular intervals, and repeat-
edly projecting all points from Ct and Ct+1 into Ct+βi

using the
known object motion and depth. We encode the dynamic shadows
in Ct+βi

by quantizing the screen space shadow map values for the
scene’s main light source, e.g. by using 2 bits bi per intermedi-
ate frame Ct+βi

, and accumulating these values in a bitfield per
pixel. Additionally, we store the RGB color values Smin/Smax of
the shaded pixels for the minimum/maximum encountered shadow
values bmin/bmax (cf. Fig. 5 for an example). For example: A server
frame rate fs = 10 FPS, and dynamic shadow frame rate fd = 40
FPS results in the rendering of three additional frames at regu-
lar intervals βi ∈ {0,0.25,0.5,0.75}, a 4 · 2 = 8 bit bitfield, and
accompanying color values for both forward and backward direc-
tion. Sparsification & Compression: We discard all pixels where
the quantized shadow value is constant across all subframes (i.e.
bmin = bmax), resulting in very sparse buffers, as usually only few
pixels are effected by dynamic shadows in-between frames. Addi-
tionally, we set Smin to zero if the initial shadow value b0 is equal to
bmin (as the color is already present in It), and vice versa for Smax
and bmax. Importantly, the shadow information bitfield needs to be
transmitted with a lossless encoding (cf. Sec. 3.4). Client: Before
starting the projection for a frame at t +α, we apply the dynamic
shadow information to the images It and It+1. As shadow informa-
tion is only present at fixed intervals t +βi, and quantized shadow
values bi can differ from the minimum/maximum shadow values
bmin/bmax, we need to interpolate: (1) temporally depending on the
current α and its previous and next time points βi ≤ α < βi+1 via
τβ ∈ [0,1]:

α = lerp(βi,βi+1,τβ)⇒ τβ =
α−βmin

βmax−βmin
, (9)

and (2) the min/max shadow color based on the quantized shadow

values bi,bi+1 ∈ [bmin,bmax] via τ(b,i),τ(b,i+1) ∈ [0,1]:

bi = lerp(bmin,bmax,τ(b,i))⇒ τ(b,i) =
bi−bmin

bmax−bmin
, (10)

to compute the final shaded color value cS as

cS = lerp(lerp(Smin,Smax,τ(b,i)), lerp(Smin,Smax,τ(b,i+1)),τβ). (11)

3.4. Compression & Encoding

The combination of low-latency requirements and the substantial
volume of auxiliary data produced by our method—which can
reach up to 1.6 Gbit/s raw data—necessitates efficient compression
to enable real-time streaming within practical bandwidth limits.

Color Images. Real-time streaming of 8-bit RGB color images
is a well-established problem with mature hardware and software
solutions. However, at high resolutions and frame rates, efficient
compression remains critical. In our setup, we employ hardware-
accelerated HEVC encoding via NVIDIA’s NVENC to compress
both the color and shadow color buffers.

Floating-Point Images. Transmitting floating-point buffers such
as depth maps and optical flow fields poses a greater challenge, as
standard video codecs are not directly designed for high-precision
data. Prior work has explored temporally-aware float compres-
sion [JB20], general-purpose float compression [Lin14], and lossy
quantization schemes [NSS14]. Our objective is to maximize visual
and numerical fidelity while minimizing bandwidth usage. Through
empirical evaluation, we found that linearly scaling 16-bit floating-
point data to fit within 12-bit RGB channels, followed by HEVC
encoding, achieves favorable results in low-bitrate scenarios.

Shadow Information. Our system encodes shadow information as
a per-pixel bit-mask, where even minor perturbations can lead to
significant visual artifacts or incorrect results. Consequently, it is
crucial to preserve this data without any loss. To ensure bit-exact
transmission, we apply lossless compression directly to the raw
mask data using the Zstandard [Col16] algorithm, which provides
an efficient trade-off between compression ratio and performance
suitable for real-time applications.

3.5. Reprojection

Our client performs bidirectional image-based reprojection, which
we adapt to our challenging spatio-temporal interpolation scenario.

Firstly, as we attempt to interpolate temporally for large time dif-
ferences (e.g. 100-200ms), and where the actual camera pose Pt+α

can deviate from the predicted interpolation path between start/end-
poses Pt and Pt+1, our backward search has to be extraordinarily
robust. In contrast to Yang et al. [YTS*11], who simply shift the
forward and backward scene flow based on α (cf. Eqn. (4)), we
explicitly construct the scene flow with respect to the actual client
pose Pt+α, i.e.

V f
t+α =V (Ct ,Ot→t+1Pt+α,α), (12)

V b
t+α =V (Ct+1,Ot+1→t ,Pt+α,(1−α)). (13)

For initialization of our backward search, we found that using

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 12 M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering

(a) GT (t) (b) GT (t +1) (c) GT (t +0.5) (d) Linear Blending (t +0.5) (e) Ours (t +0.5)

Figure 4: Example of a dynamic shadow in the Robot Lab scene, with ground truth (GT) frames at different time points, showing the quality
difference between linear blending and our method, which encodes and tracks dynamic shadows at a higher frame rate.

(a) t (b) t +0.25 (c) t +0.5 (d) t +0.75 (e) t +1 (f) Bitfield (g) Min. color (h) Max. color

Figure 5: Example of the dynamic shadow from a rolling ball; The forward shadow information is extracted on the server from the screen
space shadow map of three rendered intermediate frames at {t +0.25, t +0.5, t +0.75}. The information is encoded in a bitfield with 2 bits
per frame (visualized in the blue channel): the example pixel (red dot) has the binary value 11111100, meaning it is entirely out of shadow
(00) at the initial frame t and entirely in shadow (11) for the remaining three. The two color buffers store the accompanying min./max.
shadow color information (only if it is not present in the initial frame t). Note that the shadow information is also tracked on the moving ball
itself.

depth-aware forward point splatting based on these flow fields,
combined with a 3×3 window search to find the point closest to the
camera—as also employed by Lochmann et al. [LRR*14]—leads
to a very robust initialization. As these initializations are very ac-
curate, FPI only requires∼3 iterations to converge. In the case that
the next server frame arrives delayed (i.e. α> 1), our method grace-
fully transitions to unidirectional reprojection using only V b

t+α, pro-
viding robustness when dealing with an unstable connection.

Secondly, as disocclusions are much more frequent and notice-
able in our challenging scenario—especially for a stereoscopic
client—we employ a different strategy for handling the case where
neither the forward nor backward search found a corresponding
match (see Algorithm 1). Instead of just choosing the better match,
we attempt to fill these holes with the information from our low-
resolution auxiliary cameras, which employ the same initialization
and FPI algorithm as the main camera. Similarly to Algorithm 1,
we decide which auxiliary camera delivers the better match for a
pixel based on reprojection error and depth, and finally compare
the best auxiliary match against the match of the main camera:

1. If main found no match, then choose the auxiliary match.
2. If main found a match, then we only choose the auxiliary match

if it is neither visible in the forward nor the backward frame of
the main camera, i.e. being inside the view frustum and not oc-
cluded (when checking the depth buffer).

3. If neither main nor auxiliary find a match, we do not try to color
this pixel, and leave the color of the previous frame in there.

This process ensures that we choose the main camera’s result
whenever possible, as it contains higher-resolution information, but
still make proper use of the auxiliary information.

Finally, we adapt the correspondence check between p̂ f and p̂b

in Algorithm 2: Instead of only checking correspondence purely
based on depth, we additionally check if their 3D object motion
cancels out (within a threshold ϵO), which should hold true if they
correspond to the same surface point. This resolves wrong corre-
spondences in certain edge-cases, e.g. when a dynamic object oc-
cludes a static object, but both have very similar depth values.

4. Results

We evaluate the effectiveness and efficiency of our split render-
ing approach across a range of challenging scenarios. Our evalua-
tion focuses on both qualitative and quantitative aspects of the sys-
tem, including reconstruction quality, compression performance,
and computational cost. We test our method in a controlled mod-
ular setup and compare against several image-based reprojection
methods.

4.1. Implementation

To assess our method, we use an experimental setup that captures
the essential components of an end-to-end split rendering pipeline.
The system is divided into three main components.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering 7 of 12

Server: All server-side buffers are generated using Unity’s Uni-
versal Render Pipeline [Uni24]. Color data is represented as 8-bit
RGB images, while floating-point data such as depth and optical
flow is maintained in 16-bit half-precision format to preserve nu-
merical accuracy.

Compression: The compression stage processes the server-side
buffers and encodes them into continuous image streams suitable
for real-time transmission. Color and float-derived buffers are com-
pressed using the HEVC codec with low-latency settings to mini-
mize delay and avoid intermediate buffering. Shadow bitmask data,
which requires exact reconstruction, is compressed losslessly using
Zstandard [Col16] at compression level 10. Under a fixed band-
width budget, we allocate 60% of the available bandwidth to the
main camera and 20% to each of the two auxiliary cameras. Af-
ter subtracting the fixed-size shadow bitmask buffer—transmitted
losslessly—the remaining bandwidth is distributed among the im-
age buffers. Empirically, we found that the most effective split con-
sists of 50% for color, 20% for depth, 20% for flow fields, and 10%
for shadow color information.

Client: Client-side frame interpolation is implemented in C++
with CUDA to support efficient parallel execution. For our evalua-
tion, we set the reprojection error threshold ϵe to 0.002 for the main
camera, which approximately corresponds to a 2-pixel deviation in
normalized device coordinates. The depth similarity threshold ϵz is
configured to 0.001. To account for the lower resolution of the aux-
iliary cameras, both thresholds are scaled by a factor of four. Input
frames are divided into 16×16 pixel tiles to enable tile-parallel pro-
cessing and maintain performance at high resolutions.

4.2. Evaluation

We perform our evaluation on four different Unity scenes, with
three scenes containing dynamic content: Viking Village [Unid]
contains multiple moving objects and a fast moving rolling
sphere [Sol], Sponza [Unia; McG] contains a fast moving camera
following an animated running robot [Unic], and Robot Lab [Unib;
Vik]. The evaluated camera paths are 8s long for the Sponza scene,
and 15s for the other scenes, and contain animated characters, ro-
tating and translating complex objects, and dynamic soft shadows
from a main light source. We render the ground truth images in
Unity and quantitatively evaluate our results using the SSIM, and
FLIP [ANA*20] image metrics. Additionally, we evaluate using
the VMAF [LAK*16] perceptual video quality metric, which can
be interpreted as a linear mapping between human opinion scores
(“bad”, “poor”, “fair”, “good”, and “excellent”) from 0−100, with
100 being “excellent” and 20 considered “poor” [LBN*18].

Camera Setup. We use a multi-camera setup, with a single high-
resolution, low-FOV main camera (2560×1440, 60◦), and low-
resolution, high-FOV auxiliary cameras (1280×720, 80◦). If not
stated otherwise, the server operates at 10 FPS, the client at 120
FPS, and the shadow information is rendered at 40 FPS. Our
camera paths are pre-determined, with deterministic perturbations:
cameras are attached to an “anchor” inside the “head box”, with
the “head box” following an animated path through the scene; the
anchor simulates a HMD user behavior and deviates from this path

in translation and rotation. The server frames are generated with a
100ms offset on the anchor’s animation, simulating an imperfect
prediction (“prediction delay”) of the user’s exact future pose (cf.
supplementary video).

Methods. Our method (Ours) uses two auxiliary cameras, located
20 cm to the left and right of the main camera (all scenes are scaled
to real-world scale), and rotated 10◦ outwards. Ours (extrapolate)
is a purely unidirectional reprojection version of Ours. All other
methods (except Backward Bidir.) utilize a single auxiliary cam-
era with the same rotation and translation as the main camera. We
incorporated a number of image-based reprojection methods for
camparison to our method: Timewarp uses planar reprojection of
the previous frame at the average z-depth; Forward Splatting em-
ploys forward projection through simple point splatting and a 3×3
neighborhood search for the fragment closest to the camera (equal
to our FPI initialization); Backward Bidir. performs backward pro-
jection and is a re-implementation of bidirectional scene reprojec-
tion [YTS*11].

Quantitative Evaluation. We evaluate the baseline quality of all
methods on the uncompressed data in Tab. 1, which should serve
as an upper limit to each method’s reconstruction ability. These
numbers are also included as dotted lines in Fig. 6, which con-
tains the rate distortion curve for all methods to ablate the qual-
ity/bandwidth trade-off of our compression and encoding. Addi-
tionally, we include metrics for Timewarp with higher server frame
rates, which also operate on better pose predictions: frame rates of
10/30/60 FPS use prediction delays of 100/33.3̇/16.6̇ ms respec-
tively; Video Streaming assumes perfect predictions (0 ms delay),
i.e. just the video-encoded ground truth images. Ours outperforms
all other methods on the uncompressed data, and also delivers the
best quality/bandwidth trade-off on the compressed data, achiev-
ing “good” to “excellent” quality at ∼40−60 Mb/s. Ours (extrap-
olate) delivers similar image metrics when large parts of the scene
are static, however, it fails for challenging scenarios with fast dy-
namic objects: (1) extrapolating non-linear motion based purely on
the previous motion leads to rough transitions once the next frame
arrives; (2) shading changes or dynamic shadows cannot be han-
dled at all, leading to non-smooth shading transitions and unreal-
istic shadows; (3) disocclusions due to moving objects cannot be
filled with useful information (cf. the supplemental video). For-
ward Splatting shows the same artifacts, but additionally leads to
noisy results due to the 3×3 pixel footprint of each point, which
is required to properly solve occlusions; this noise even leads to
better metrics on the slightly blurrier compressed data vs. the un-
compressed data (dotted line). Timewarp is unable to handle camera
translation and object motion properly, which leads to bad results
for our challenging scenario. When increasing the server frame rate
to 30 or even 60 FPS, the generated videos get noticeably smoother,
but the slightly incorrect reprojection still leads to inferior metrics.
Backward Bidir. fails entirely, as it can only interpolate linearly be-
tween the server frames, and cannot account for a diverging client
camera pose. Unsurprisingly, the compressed client Video Stream-
ing at 120 FPS compares best on frame-to-frame image and video
metrics. However, this setup relies on the unrealistic assumptions of
zero-latency and/or perfect head movement prediction. Timewarp

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 12 M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering

(60 FPS), which more closely resembles a realistic streaming setup,
achieves noticeably inferior image metrics to our method.

Table 1: Averaged per-image metrics for our qualitative evaluation
on the uncompressed data. This serves as an upper limit of each
method’s reprojection capabilities.

Viking Village

Static Dynamic

Method SSIM↑ FLIP↓ VMAF↑ SSIM↑ FLIP↓ VMAF↑

Ours 0.923 0.043 84.80 0.923 0.043 84.55
Ours (extrapolate) 0.916 0.044 83.27 0.914 0.045 82.19
Forward Splatting 0.704 0.105 34.57 0.705 0.105 34.07
Timewarp 0.556 0.193 17.92 0.555 0.195 17.39
Backward Bidir. 0.477 0.283 6.03 0.478 0.283 5.87

Sponza Robot Lab

Method SSIM↑ FLIP↓ VMAF↑ SSIM↑ FLIP↓ VMAF↑

Ours 0.938 0.038 80.01 0.944 0.032 84.28
Ours (extrapolate) 0.922 0.044 74.83 0.932 0.036 80.64
Forward Splatting 0.714 0.094 31.19 0.766 0.077 37.75
Timewarp 0.522 0.200 5.58 0.615 0.150 11.70
Backward Bidir. 0.506 0.218 2.78 0.492 0.250 0.84

We also ablate our method’s robustness to unstable connec-
tions in Tab. 2, by introducing an artificial latency/delay to the re-
ceived server data. During this delay—i.e. until the data for frame
Ft+1 arrives—our method temporarily switches to unidirectional
projection and extrapolates using the information from the previ-
ous server frame Ft . Small latencies are almost unnoticeable, both
quantitatively and qualitatively (cf. supplemental video), especially
for static scenes, or scenes with slowly moving objects. However,
larger delays become noticeable for more challenging scenarios,
e.g. fast, non-linearly moving objects, large shading changes, and
dynamic shadows. Finally, Tab. 3 includes an evaluation for a stereo
client setup (pupillary distance of 7 cm), where our method main-
tains high quality, and is able to fill disocclusions from the infor-
mation in the left and right auxiliary cameras.

Table 2: Ablation of our method’s robustness to an unstable con-
nection by introducing an artificial delay to the received server
frames, i.e. the information for frame Ft+1 arrives l client frames
too late (fc = 120 FPS, fs = 10 FPS). For l = 12, our method de-
generates to complete unidirectional reprojection (extrapolation).
Rendered using the compressed data, with a target bit rate of 40
Mb/s.

Sponza Robot Lab

Method SSIM↑ FLIP↓ SSIM↑ FLIP↓

Ours 0.876 0.064 0.924 0.044
Ours l = 1 0.876 0.064 0.924 0.044
Ours l = 2 0.876 0.064 0.924 0.044
Ours l = 4 0.874 0.064 0.923 0.044
Ours l = 8 0.867 0.066 0.918 0.046
Ours (extrapolate) 0.859 0.070 0.912 0.049

0 20 40 60 80
Mb/s

20

40

60

80

100

V
M

A
F

Robot Lab - dynamic

0 20 40 60 80
Mb/s

Sponza - dynamic

0 20 40 60 80
Mb/s

20

40

60

80

100

V
M

A
F

Viking Village - dynamic

0 20 40 60
Mb/s

Viking Village - static

Compression Ablation: VMAF↑ vs. Mb/s

Timewarp (10 FPS)
Timewarp (30 FPS)
Timewarp (60 FPS)

Forward Splatting
Video Streaming (120 FPS)

Ours (extrapolate)
Ours

Figure 6: Rate distortion curves VMAF (higher is better) vs. Mb/s,
exploring the quality/bandwidth trade-off for our evaluated meth-
ods. Note that Video Streaming assumes a perfect prediction of the
head movement and a zero-latency setup (0 ms); Timewarp follows
a more traditional streaming setup, with higher framerates and a
prediction window of one frame: 60 FPS, 16.7 ms; 30 FPS, 33.3
ms; 10 FPS, 100 ms. The dotted lines visualize the quality result
for each method on the uncompressed data.

Qualitative Evaluation. We provide a visual comparison in Fig. 7,
as well as the supplemental video. Compression naturally leads to
blurrier image buffers, but also to slight ghosting, as the color of dy-
namic foreground objects can bleed into the background, and vice
versa (see "Earth sphere" in Ours). Excessive compression on the
3D object motion and depth buffers can lead to fuzzy edges at depth
discontinuities; for the shown compression rate (target bit rate of 40
Mb/s), these artifacts are barely noticeable. Forward Splatting and
Ours (extrapolate) struggle with dynamic shadows and disocclu-
sions, revealed by moving objects; Forward Splatting additionally
produces much noisier images. Timewarp is only suited for sim-
ple spatio-temporal frame generation tasks, and completely fails for
our challenging scenario, as our scene contains a considerable di-
vergence from the predicted camera position, fast moving objects,
and large temporal differences between server frames. Backward
Bidir. also fails for a divergent client camera, and while it should
be able to handle moving objects, their employed FPI initialization

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering 9 of 12

Table 3: Comparison of all methods on the compressed data (target
bit rate 40 Mb/s) for a stereoscopic client setup, with the averaged
metrics from the left and right stereo cameras.

Sponza

Mono Stereo

Method SSIM↑ FLIP↓ SSIM↑ FLIP↓

Ours 0.876 0.064 0.872 0.065
Ours (extrapolate) 0.859 0.070 0.862 0.069
Forward Splatting 0.715 0.096 0.720 0.098
Timewarp 0.542 0.194 0.537 0.200
Backward Bidir. 0.522 0.216 0.518 0.225

Robot Lab

Mono Stereo

Method SSIM↑ FLIP↓ SSIM↑ FLIP↓

Ours 0.924 0.044 0.922 0.045
Ours (extrapolate) 0.912 0.049 0.910 0.050
Forward Splatting 0.771 0.077 0.767 0.080
Timewarp 0.625 0.149 0.557 0.198
Backward Bidir. 0.498 0.250 0.490 0.258

fails to find good correspondences for thin or fast moving objects.
We refer to our supplemental video for a more detailed qualitative
comparison.

4.3. Computational Analysis

Our current prototype implementation is divided into three separate
components. The primary objective of our work has been to develop
a robust reprojection method that delivers high-quality and correct
results, even under challenging conditions. To support this goal, we
designed an efficient encoding scheme that minimizes bandwidth
requirements. None of the components are currently optimized
for runtime performance, as we prioritized experimental flexibil-
ity over execution speed. Still, the core steps of our image-based
reprojection algorithm are lightweight, and similar techniques have
previously been demonstrated to run efficiently on mobile hard-
ware [YZZ*24].

Client. Our image-based reprojection algorithm runs in approx-
imately 2 ms per frame (500 FPS) on a high-end consumer GPU
(RTX 4090) for a 2560 × 1440 camera setup. The runtime is
roughly split between two stages: (1) Computing flow fields, ap-
plying dynamic shadow encoding to the color images, and forward-
projecting the original surface points to initialize FPI. Currently,
each forward and backward image pair from the main, left, and
right cameras performs these operations in separate, sequential ker-
nel calls, revealing clear potential for parallelization. This stage is
also heavily memory-bound, as flow and depth fields are read and
written in 32-bit, despite our encoding using only 12-bit values—
effectively tripling the bandwidth requirements in our prototype.
Another bottleneck arises from the use of 64-bit atomicMin op-
erations during depth-aware splatting, which combine 32-bit depth
and 32-bit pixel ID into a single payload. Considering the limited
depth range of our encoded format and bounded pixel movement,
32-bit atomics would be sufficient in practice—but would restrict

experimental flexibility. (2) The actual FPI search is implemented
as a single kernel, executed sequentially for all cameras. Due to the
fixed and low iteration count per camera, and the absence of explicit
geometry processing, this step is highly efficient and well suited for
mobile deployment, as demonstrated in prior work [YZZ*24]. Ex-
ploiting parallelization across all camera views and reducing mem-
ory bandwidth can increase the performance of these steps by at
least 4×, according to our experiments. By relying on dedicated
hardware, it may be possible to eliminate the need to split the pro-
cess into two steps, computing the input for FPI on the fly while
utilizing caches to keep the data in fast memory. This could poten-
tially result in an additional performance boost of 2× or more.

Compression. Our compression pipeline is designed for real-time
performance, targeting high compression ratios with minimal la-
tency. Color images are encoded using HEVC via NVENC, lever-
aging dedicated hardware encoders for high throughput. While
NVENC is highly efficient, streaming multiple buffers in parallel
approaches the limits of available encoder bandwidth and hardware
resources. Nonetheless, for our target frame rate of 5–10 FPS on
professional GPUs, this setup remains feasible. For floating-point
buffers (i.e. depth and object motion), we use 12-bit HEVC encod-
ing to preserve fine detail; however, this requires slower, software-
based encoding on consumer GPUs. In cloud-based deployments
or with specialized hardware, dedicated 12-bit encoders can pro-
vide significantly higher throughput. In contrast, shadow masks are
compressed using Zstandard [Col16], which offers fast, lightweight
performance with real-time capabilities—without relying on spe-
cialized hardware.

5. Conclusion, Limitations & Future Work

We presented an image-based spatio-temporal interpolation method
designed for split rendering on low-powered devices, such as mo-
bile HMDs. Our image-based approach operates without geometry,
minimizes bandwidth, and remains robust under motion, viewpoint
changes, and dynamic shading—particularly shadows. Through
bidirectional reprojection, iterative search, auxiliary views, and en-
coded shadow dynamics, our approach achieves high visual fidelity
and interactive performance even under constrained network and
compute conditions.

Our evaluations across multiple scenes demonstrate that our
method outperforms prior image-based and G-buffer-based frame
generation strategies, especially in handling disocclusions, dy-
namic content, and challenging prediction errors in user motion.
The combination of low-latency reprojection and efficient com-
pression provides a viable path toward responsive and visually co-
herent cloud-assisted rendering for mobile XR. While promising,
our method currently relies on relatively heavy preprocessing and
client-side decoding, which we plan to optimize for real-world de-
ployment on embedded GPUs. Additionally, our system does not
yet handle all forms of shading effects—such as caustics or volu-
metric lighting—and assumes moderate prediction quality for fu-
ture viewpoints. Overall, we believe this work contributes a prac-
tical step toward bridging the gap between high-end rendering and
mobile form-factor devices while keeping the experience smooth,
immersive, and light on bandwidth.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 12 M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering
I t

an
d

I t+
1

G
T

I t+
α

O
ur

s
(u

nc
om

pr
es

se
d)

O
ur

s
O

ur
s

(e
xt

ra
po

la
te

)
Fo

rw
ar

d
Sp

la
tti

ng
Ti

m
ew

ar
p

B
ac

kw
ar

d
B

id
ir.

(a) Viking Village (b) Robot Lab (c) Sponza

Figure 7: Qualitative comparison of example views from our evaluated dynamic scenes for a compression target bit rate of 40Mb/s, with
their corresponding FLIP error images. Extrapolation methods—Forward Splatting & Ours (extrapolate)—struggle with dynamic shadows,
shading changes, and disocclusions behind moving objects. Timewarp & Backward Bidir. cannot handle a diverging client camera properly.
Ours is able to handle these challenging scenarios, and can be streamed using efficient encoding and compression, with only a minor loss in
quality compared to the uncompressed result.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering 11 of 12

References
[ANA*20] ANDERSSON, PONTUS, NILSSON, JIM, AKENINE-MÖLLER,

TOMAS, et al. “FLIP: A Difference Evaluator for Alternating Images”.
Proceedings of the ACM on Computer Graphics and Interactive Tech-
niques 3.2 (2020) 7.

[BCC16] BOOS, KEVIN, CHU, DAVID, and CUERVO, EDUARDO. “Flash-
Back: Immersive Virtual Reality on Mobile Devices via Rendering
Memoization”. Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services. 2016, 291–304 2.

[BDM*21] BRIEDIS, KARLIS MARTINS, DJELOUAH, ABDELAZIZ,
MEYER, MARK, et al. “Neural Frame Interpolation for Rendered Con-
tent”. ACM Trans. Graph. 40.6 (2021) 2.

[BMS*12] BOWLES, HUW, MITCHELL, KENNY, SUMNER, ROBERT
W., et al. “Iterative Image Warping”. Computer Graphics Forum 31.2
(2012), 237–246 2, 4.

[Col16] COLLET, YANN. Zstandard - Real-time data compression algo-
rithm. https://facebook.github.io/zstd/. Accessed: 2025-
04-09. 2016 5, 7, 9.

[CW93] CHEN, SHENCHANG ERIC and WILLIAMS, LANCE. “View In-
terpolation for Image Synthesis”. Proceedings of the 20th Annual Con-
ference on Computer Graphics and Interactive Techniques. SIGGRAPH
’93. 1993, 279–288 2.

[dAWA*23] Dos ANJOS, RAFAEL KUFFNER, WALTON, DAVID, AKŞIT,
KAAN, et al. “Metameric Inpainting for Image Warping”. IEEE Trans.
Vis. Comput. Graph. 29.12 (2023), 5511–5522 2.

[DBZD12] DO, LUAT, BRAVO, GERMAN, ZINGER, SVITLANA, and
DE WITH, PETER HN. “GPU-accelerated Real-time Free-viewpoint
DIBR for 3DTV”. IEEE Transactions on Consumer Electronics 58.2
(2012), 633–640 2.

[DER*10] DIDYK, PIOTR, EISEMANN, ELMAR, RITSCHEL, TOBIAS, et
al. “Perceptually-motivated Real-time Temporal Upsampling of 3D Con-
tent for High-refresh-rate Displays”. Computer Graphics Forum 29.2
(2010), 713–722 2.

[DRE*10] DIDYK, PIOTR, RITSCHEL, TOBIAS, EISEMANN, ELMAR, et
al. “Adaptive Image-space Stereo View Synthesis”. Vision, Modeling,
and Visualization. 2010 2.

[GGSC96] GORTLER, STEVEN J., GRZESZCZUK, RADEK, SZELISKI,
RICHARD, and COHEN, MICHAEL F. “The Lumigraph”. Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’96. 1996, 43–54 2.

[GHZ*24] GUO, SHUAI, HU, JINGCHUAN, ZHOU, KAI, et al. “Real-Time
Free Viewpoint Video Synthesis System Based on DIBR and A Depth
Estimation Network”. IEEE Transactions on Multimedia (2024) 2.

[GLJ*25] GAO, STEVEN, LIU, JEFFREY, JIANG, QINJUN, et al. “XRgo:
Design and Evaluation of Rendering Offload for Low-Power Extended
Reality Devices”. Proceedings of the 16th ACM Multimedia Systems
Conference. 2025, 124–135 2.

[HSV*22] HLADKY, JOZEF, STENGEL, MICHAEL, VINING, NICHOLAS,
et al. “QuadStream: A Quad-Based Scene Streaming Architecture for
Novel Viewpoint Reconstruction”. ACM Trans. Graph. 41.6 (2022) 1, 2.

[JB20] JUN, HANSEUL and BAILENSON, JEREMY. “Temporal RVL: A
Depth Stream Compression Method”. IEEE Conference on Virtual Real-
ity and 3D User Interfaces Abstracts and Workshops. 2020, 664–665 5.

[KSEY18] KÄMÄRÄINEN, TEEMU, SIEKKINEN, MATTI, EERIKÄINEN,
JUKKA, and YLÄ-JÄÄSKI, ANTTI. “CloudVR: Cloud Accelerated In-
teractive Mobile Virtual Reality”. Proceedings of the 26th ACM Interna-
tional Conference on Multimedia. 2018, 1181–1189 2.

[LAK*16] LI, ZHI, AARON, ANNE, KATSAVOUNIDIS, IOANNIS, et al. To-
ward A Practical Perceptual Video Quality Metric. 2016. URL: https:
/ / netflixtechblog . com / toward - a - practical -
perceptual-video-quality-metric-653f208b9652 7.

[LBN*18] LI, ZHI, BAMPIS, CHRISTOS, NOVAK, JULIE, et al. VMAF:
The Journey Continues. 2018. URL: https://netflixtechblog.
com/vmaf-the-journey-continues-44b51ee9ed12 7.

[LBR*18] LALL, PUNEET, BORAC, SILVIU, RICHARDSON, DAVE, et al.
“View-Region Optimized Image-Based Scene Simplification”. Proceed-
ings of the ACM on Computer Graphics and Interactive Techniques 1.2
(2018) 2.

[LCC*15] LEE, KYUNGMIN, CHU, DAVID, CUERVO, EDUARDO, et al.
“Outatime: Using Speculation to Enable Low-Latency Continuous Inter-
action for Mobile Cloud Gaming”. Proceedings of the 13th Annual In-
ternational Conference on Mobile Systems, Applications, and Services.
2015, 151–165 2.

[LHC*17] LAI, ZEQI, HU, Y. CHARLIE, CUI, YONG, et al. “Furion: En-
gineering High-Quality Immersive Virtual Reality on Today’s Mobile
Devices”. Proceedings of the 23rd Annual International Conference on
Mobile Computing and Networking. 2017, 409–421 2.

[Lin14] LINDSTROM, PETER. “Fixed-Rate Compressed Floating-Point
Arrays”. IEEE Trans. Vis. Comput. Graph. 20.12 (2014), 2674–2683 5.

[LKC08] LEE, SUNGKIL, KIM, GERARD JOUNGHYUN, and CHOI,
SEUNGMOON. “Real-Time Depth-of-Field Rendering Using Point
Splatting on Per-Pixel Layers”. Computer Graphics Forum 27.7
(2008), 1955–1962 2.

[LKE18] LEE, SUNGKIL, KIM, YOUNGUK, and EISEMANN, ELMAR. “It-
erative Depth Warping”. ACM Trans. Graph. 37.5 (2018) 2, 4.

[LRR*14] LOCHMANN, GERRIT, REINERT, BERNHARD, RITSCHEL,
TOBIAS, et al. “Real-time Reflective and Refractive Novel-view Syn-
thesis”. Vision, Modeling and Visualization. 2014 2, 4, 6.

[LTV*16] LE DINH, MINH, TUNG, LONG VUONG, VAN, XIEM HOANG,
et al. “Improving 3D-TV View Synthesis Using Motion Compensated
Temporal Interpolation”. 2016 International Conference on Advanced
Technologies for Communications (ATC). 2016, 312–317 2.

[McG] MCGUIRE COMPUTE GRAPHICS ARCHIVE. Crytek Sponza. The
Atrium Sponza Palace in Dubrovnik, re-modeled by Frank Meinl at Cry-
tek. Licensed under CC BY 3.0. URL: https://casual-effects.
com/data 7.

[MFL21] MISIAK, MARTIN, FUHRMANN, ARNULPH, and LATOSCHIK,
MARC ERICH. “Impostor-based Rendering Acceleration for Virtual,
Augmented, and Mixed Reality”. Proceedings of the 27th ACM Sym-
posium on Virtual Reality Software and Technology. 2021 2.

[MFY*09] MORI, YUJI, FUKUSHIMA, NORISHIGE, YENDO, TOMO-
HIRO, et al. “View Generation with 3D Warping Using Depth Infor-
mation for FTV”. Signal Processing: Image Communication 24.1-2
(2009), 65–72 2.

[MMB97] MARK, WILLIAM R., MCMILLAN, LEONARD, and BISHOP,
GARY. “Post-Rendering 3D warping”. Proceedings of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games. 1997 2.

[MVD*18] MUELLER, JOERG H, VOGLREITER, PHILIP, DOKTER,
MARK, et al. “Shading atlas streaming”. ACM Transactions on Graphics
(TOG) 37.6 (2018), 1–16 1, 2.

[NKD*11] NDJIKI-NYA, PATRICK, KOPPEL, MARTIN, DOSHKOV, DIM-
ITAR, et al. “Depth Image-Based Rendering With Advanced Texture
Synthesis for 3-D Video”. IEEE Transactions on Multimedia 13.3
(2011), 453–465 2.

[NKDW08] NDJIKI-NYA, PATRICK, KÖPPEL, MARTIN, DOSHKOV,
DIMITAR, and WIEGAND, THOMAS. “Automatic Structure-Aware In-
painting for Complex Image Content”. Proceedings of the 4th Inter-
national Symposium on Advances in Visual Computing. 2008, 1144–
1156 2.

[NSL*07] NEHAB, DIEGO, SANDER, PEDRO V., LAWRENCE, JASON,
et al. “Accelerating Real-Time Shading with Reverse Reprojection
Caching”. Proceedings of the SIGGRAPH/Eurographics Workshop on
Graphics Hardware. 2007 2.

[NSS14] NENCI, FABRIZIO, SPINELLO, LUCIANO, and STACHNISS,
CYRILL. “Effective compression of range data streams for remote robot
operations using H.264”. IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. 2014, 3794–3799 5.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://facebook.github.io/zstd/
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
https://casual-effects.com/data
https://casual-effects.com/data

12 of 12 M. Steiner & T. Köhler, et al. / Image-Based Spatio-Temporal Interpolation for Split Rendering

[PGB03] PÉREZ, PATRICK, GANGNET, MICHEL, and BLAKE, ANDREW.
“Poisson Image Editing”. SIGGRAPH. 2003, 313–318 2.

[RKR*16] REINERT, BERNHARD, KOPF, JOHANNES, RITSCHEL, TO-
BIAS, et al. “Proxy-guided Image-based Rendering for Mobile Devices”.
Computer Graphics Forum 35.7 (2016), 353–362 2.

[SA12] SOLH, MASHHOUR and ALREGIB, GHASSAN. “Hierarchical
Hole-Filling For Depth-Based View Synthesis in FTV and 3D Video”.
IEEE Journal of Selected Topics in Signal Processing 6.5 (2012), 495–
504 2.

[SGHS98] SHADE, JONATHAN, GORTLER, STEVEN, HE, LI-WEI, and
SZELISKI, RICHARD. “Layered Depth Images”. Proceedings of the
ACM on Computer Graphics and Interactive Techniques. 1998 2.

[SNC12] SHI, SHU, NAHRSTEDT, KLARA, and CAMPBELL, ROY. “A
Real-Time Remote Rendering System for Interactive Mobile Graphics”.
ACM Trans. Multimedia Comput. Commun. Appl. 8.3s (2012) 2.

[Sol] SOLAR SYSTEM SCOPE. Solar Textures. Distributed under At-
tribution 4.0 International license. URL: https : / / www .
solarsystemscope.com/textures 7.

[Unia] UNITY. Classic Sponza - Unity Remaster. URL: https : / /
github.com/Unity-Technologies/Classic-Sponza 7.

[Unib] UNITY. Robot Lab (Unity 4x). Asset no longer available. URL:
https : / / assetstore . unity . com / packages /
essentials/tutorial- projects/robot- lab- unity-
4x-7006 7.

[Unic] UNITY. Starter Assets - ThirdPerson. Licensed under the Unity
Companion License: https://unity.com/legal/licenses/
unity-companion-license. URL: https://assetstore.
unity.com/packages/essentials/starter- assets-
thirdperson-updates-in-new-charactercontroller-
pa-196526 7.

[Unid] UNITY. Viking Village URP. Licensed under the Standard Unity
Asset Store EULA: https://unity.com/legal/as-terms.
URL: https : / / assetstore . unity . com / packages /
essentials / tutorial - projects / viking - village -
urp-29140 7.

[Uni24] UNITY TECHNOLOGIES. Unity. https://unity.com/. Ac-
cessed: 2025-04-09. 2024 7.

[Vik] VIKTOROV, DMITRY. Github - Robot Lab. Robot Lab from the
Unity Asset Store adopted for Unity 2018.3. URL: https://github.
com/dmitry1100/Robot-Lab 7.

[WKZ*23] WU, SONGYIN, KIM, SUNGYE, ZENG, ZHENG, et al. “Ex-
traSS: A Framework for Joint Spatial Super Sampling and Frame Ex-
trapolation”. SIGGRAPH. 2023 2.

[WVS*24] WU, SONGYIN, VEMBAR, DEEPAK, SOCHENOV, ANTON, et
al. “GFFE: G-buffer Free Frame Extrapolation for Low-latency Real-
time Rendering”. ACM Trans. Graph. 43.6 (2024) 2.

[YTS*11] YANG, LEI, TSE, YU-CHIU, SANDER, PEDRO V., et al.
“Image-Based Bidirectional Scene Reprojection”. ACM Trans. Graph.
30.6 (2011) 2–5, 7.

[YWY10] YU, XUAN, WANG, RUI, and YU, JINGYI. “Real-time Depth
of Field Rendering via Dynamic Light Field Generation and Filtering”.
Computer Graphics Forum (2010) 2.

[YZZ*24] YANG, SIPENG, ZHU, QINGCHUAN, ZHUGE, JUNHAO, et al.
“Mob-FGSR: Frame Generation and Super Resolution for Mobile Real-
Time Rendering”. SIGGRAPH. 2024 2, 9.

[ZDD10] ZINGER, SVETA, DO, LUAT, and DE WITH, PHN. “Free-
viewpoint depth image based rendering”. Journal of Visual Communi-
cation and Image Representation 21.5-6 (2010), 533–541 2.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://www.solarsystemscope.com/textures
https://www.solarsystemscope.com/textures
https://github.com/Unity-Technologies/Classic-Sponza
https://github.com/Unity-Technologies/Classic-Sponza
https://assetstore.unity.com/packages/essentials/tutorial-projects/robot-lab-unity-4x-7006
https://assetstore.unity.com/packages/essentials/tutorial-projects/robot-lab-unity-4x-7006
https://assetstore.unity.com/packages/essentials/tutorial-projects/robot-lab-unity-4x-7006
https://unity.com/legal/licenses/unity-companion-license
https://unity.com/legal/licenses/unity-companion-license
https://assetstore.unity.com/packages/essentials/starter-assets-thirdperson-updates-in-new-charactercontroller-pa-196526
https://assetstore.unity.com/packages/essentials/starter-assets-thirdperson-updates-in-new-charactercontroller-pa-196526
https://assetstore.unity.com/packages/essentials/starter-assets-thirdperson-updates-in-new-charactercontroller-pa-196526
https://assetstore.unity.com/packages/essentials/starter-assets-thirdperson-updates-in-new-charactercontroller-pa-196526
 https://unity.com/legal/as-terms
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://unity.com/
https://github.com/dmitry1100/Robot-Lab
https://github.com/dmitry1100/Robot-Lab

